# Biogenetic Relationships between Annonaceous Acetogenins: Squamocin Is Not a Precursor of Chamuvarinin Based on a Semisynthetic Study 

Séverine Derbré, Erwan Poupon,* Christophe Gleye, and Reynald Hocquemiller<br>Laboratoire de Pharmacognosie Associé au CNRS (BioCIS, UMR 8076), Université Paris-Sud 11, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France

Received August 1, 2006

In the course of reactivity studies on squamocin (1), a highly cytotoxic acetogenin from the plant family Annonaceae, two diastereomers, $\mathbf{3}$ and $\mathbf{4}$, of chamuvarinin (2) were synthesized. Based on this, a plausible relative configuration was proposed for $\mathbf{2}$, demonstrating the absence of any biogenetic link between $\mathbf{1}$ and $\mathbf{2}$. The new analogues $\mathbf{3}, \mathbf{4}$, and $\mathbf{7}$ were also tested for their ability to induce apoptosis.

Acetogenins of the Annonaceae constitute a broad group of secondary metabolites with potent biological activities such as their cytotoxic properties. ${ }^{1}$ In consequence, they have been considered as important leads for new anticancer drugs. ${ }^{2}$ However, more recently, Annonaceous acetogenins have been suspected as causative factors in neurodegenerative disorders such as atypical parkinsonism. ${ }^{3}$ The high activity of the acetogenins of the Annonaceae in conjunction with this new public health issue necessitates a better understanding of the exact mechanisms of action of these compounds. Therefore, we have embarked on synthetic investigations on squamocin (1), ${ }^{4}$ a common acetogenin of the Annonaceae ${ }^{5}$ extracted in our case from the seeds of Annona reticulata L . Squamocin (1), as depicted in Figure 1, possesses a terminal $\alpha, \beta$ unsaturated $\gamma$-lactone (which is believed to be the main pharmacophore for complex I inhibition) and a central polar part consisting of two tetrahydrofuran rings and three secondary alcohol functions. On the other hand, chamuvarinin (2, Figure 1), a new acetogenin, was recently isolated with squamocin from a cyclohexane extract of the roots of Uvaria chamae P. Beauv. (Annonaceae). ${ }^{6}$ It features an unusual tetrahydropyran (THP) ring ${ }^{7}$ adjacent to the common bis-tetrahydrofuran (THF) system found in numerous acetogenins. The concomitant presence of both $\mathbf{1}$ and $\mathbf{2}$ in $U$. chamae suggests a possible biogenetic link between these two structures. In the present investigation, it was intended to investigate the feasibility of accessing the THP ring of $\mathbf{2}$ from $\mathbf{1}$ as a way demonstrating this plausible link and also to gain further information concerning the stereochemistry of chamuvarinin (2).

Recently, a selective iodination of alcohols was described using sodium iodide and the ion-exchange resin Amberlyst 15 under very mild conditions. ${ }^{8}$ It was considered that this reactivity could promote interesting reactions in biomimetic conditions with squamocin (1). Treatment of $\mathbf{1}$ under these conditions for 24 h in acetonitrile at room temperature gave rise to a less polar compound $\mathbf{3}$ with a molecular mass of $604 \mathrm{Da}\left(\mathbf{1}-\mathrm{H}_{2} \mathrm{O}\right)$, corresponding to that of chamuvarinin (2) (Scheme 1, route a). Concomitantly, $\mathbf{1}$ was subjected to Mitsunobu-type conditions. Three major compounds were isolated from the reaction: $\mathbf{3}$ was found again along with 4 and iodo derivative 5 (Scheme 1, route b). Compound 4, which also shares with $\mathbf{2}$ the same mass, was assigned as a diastereomer of $\mathbf{3}$ by NMR spectroscopic analysis. Finally, squamocin (1) was reacted in acidic conditions in THF with Amberlyst 15 but in the absence of NaI (Scheme 1, route c). Isomeric $\mathbf{3}$ and $\mathbf{4}$ were isolated from the crude mixture as well as a dehydrated derivative, $\mathbf{6}$ (the exact position of the double bond has not been clarified). The Mitsunobu reaction performed with 2 equiv of triphenylphosphine and diethylazodicarboxylate but without any nucleophilic reagent

[^0]

Figure 1. Structures of $\mathbf{1}$ and $\mathbf{2}$ and key SAR elements.
was performed. It did not lead to $\mathbf{4}$ as expected but to a mixture of 7 and 8, separated by flash chromatography (Scheme 2). The relatively high yield of the monosubstituted carbamate 7 confirmed the possibility of modulating selectively position $\mathrm{C}-28$ of the acetogenin using Mitsunobu conditions. ${ }^{9}$ Treatment of squamocin (1) in strong acidic conditions such as $\mathrm{HBr}(48 \%)$ as previously reported for the construction of a cyclic ether unit from diols ${ }^{10}$ led to the complete degradation of $\mathbf{1}$.

Disappearance of the $\mathrm{H}-24$ and $\mathrm{H}-28$ protons of $\mathbf{1}$ (3.85 and 3.60 ppm, respectively) as observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ and 4 demonstrated the occurrence of a reaction of the attached hydroxyl functions, while new ${ }^{1} \mathrm{H}$ NMR signals (3: $3.21-3.23 \mathrm{ppm}, \mathbf{4}: 3.45$ and 3.64 ppm ) suggested the formation of a tetrahydropyran ring. The relative configuration of the newly created ring was deduced from careful NMR analysis and by comparison with literature data. ${ }^{7,11} \mathrm{~A}$ cis relationship was established for $\mathbf{3}$ (shielded $\alpha$ and $\alpha^{\prime}$ protons) and a trans configuration for 4 (deshielded $\alpha$ and $\alpha^{\prime}$ protons).

Assuming a more likely reaction at the less hindered 28 position, Scheme 3 provides a mechanistic rationale for the sequences of reactions that led to diastereomeric $\mathbf{3}$ and $\mathbf{4}$ and compounds 5 and 6. Two sequential $\mathrm{S}_{\mathrm{N}} 2$-type reactions may explain the formation of 3 via either the acidic mediated pathway (path a) or the

Scheme 1. Semisynthetic Derivatives of $\mathbf{1}$ and Plausible Structure of $\mathbf{2}^{a}$


${ }^{a}$ Reagents and conditions: (a) NaI ( 33 equiv), Amberlyst $\mathrm{H}-15$ (excess), $\mathrm{CH}_{3} \mathrm{CN}$, rt, 24 h ( $17 \%$ ); (b) $\mathrm{PPh}_{3}$ (4.5 equiv), $\mathrm{I}_{2}$ (4.5 equiv), DEAD (4.5 equiv), THF, rt, 24 h (3: $21 \%, 4: 21 \%, 5: 22 \%$ ); (c) Amberlyst H-15 (excess), THF, reflux, $5 \mathrm{~d}(\mathbf{3}: 11 \%, 4: 11 \%, 6: 26 \%)$.

Mitsunobu-type pathway (path b). In both cases, competition with intramolecular nucleophilic substitution involving OH -24 may bypass the process and give rise to 4 .

Neither $\mathbf{3}$ nor $\mathbf{4}$ was a perfect match with natural 2. From all information gathered through chemical synthesis and reanalysis of the spectroscopic data of chamuvarinin (2), ${ }^{6}$ a plausible stereostructure for $\mathbf{2}$ is proposed (Scheme 1, see ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data). First, chamuvarinin (2) presents unambiguously cis geometry at the tetrahydropyran ring (e.g., ${ }^{1} \mathrm{H}$ NMR: shielded $\mathrm{H}-24$ and $\mathrm{H}-28$; ${ }^{13}$ C NMR: deshielded C-24 and C-28). Furthermore, chemical shifts of the central THF ring could account for a cis relationship by comparison with literature data of other acetogenins (e.g., H-21: $1.72 \mathrm{ppm} ; \mathrm{H}-22: 1.92 \mathrm{ppm}) .{ }^{12}$ In agreement with a low $\Delta \mathrm{ppm}$ between protons in a threo geometry compared to the erythro, the observed chemical shifts for $\mathbf{2}$ are consistent with a C-19/C-20 and a C-23/C-24 threo structure. Chamuvarinin (2) is therefore unlikely to be derived from squamocin (1) in nature. Among many possibilities, a plausible biogenetic pathway is depicted in Scheme 4. Starting from an unsaturated precursor like chatenaytrienine$4,{ }^{13}$ one can explain the formation of chamuvarinin (2) via regioand stereoselective oxidations followed by a cascade of favored exo-tet $\mathrm{S}_{\mathrm{N}} 2$ openings of the epoxides. Further studies for proving the relative stereochemistry and elucidating the absolute stereochemistry of $\mathbf{2}$ and its possible origin are underway.

Scheme 2. Reaction with $\mathrm{DEAD}^{a}$


${ }^{a}$ Reagents and conditions: $\mathrm{PPh}_{3}$ (2 equiv), DEAD (2 equiv), THF, rt, 24 h (7: $32 \%, 8: 11 \%$ ).

Scheme 3. Proposed Mechanism for the Conversion of 1 to 3-6


Scheme 4. Plausible Biogenetic Origin for Chamuvarinin (2)


Squamocin (1) is known to be a proapoptotic agent. ${ }^{4 a}$ Compounds 3 and $\mathbf{4}$ were tested for their ability to induce apoptosis of Jurkat T cells. The measurement, by flow cytometry, of the early stage disruption of mitochondrial transmembrane potential, a constant event of apoptosis, permitted the evaluation, through a simple screening procedure, of the ability of the semisynthetic analogues to induce programmed cell death. Chamuvarinin diastereomers 3


Figure 2. Evaluation of pro-apoptotic potential for $\mathbf{1}$ and its semisynthetic analogues $\mathbf{3}$ and $\mathbf{4}$ by measurement of $\Delta \Psi_{\mathrm{m}}$ disruption in Jurkat T cells. After 24 h of the indicated treatment, Jurkat cells were labeled with both $\mathrm{DiOC}_{6}(3)$ and propidium iodide and analyzed by flow cytometry. Percentages refer to cells with low $\mathrm{DiOC}_{6}(3)$ staining. As positive control, etoposide ( $10 \mu \mathrm{M}$ ) induced $\Delta \Psi_{\mathrm{m}}$ loss on $80 \pm 10 \%$ of the cells (three independent experiments).
and 4 were poor apoptotic inducers compared to squamocin (1) and analogue 7 (Figure 2).

## Experimental Section

## General Experimental Procedures. See ref 4a.

Procedures for the Preparation of Compounds 3-6 from 1. Scheme 1, Route a. To a solution of squamocin (1, $50 \mathrm{mg}, 80 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ were added sodium iodide ( $389 \mathrm{mg}, 2.6 \mathrm{mmol}, 33$ equiv) and a large excess of Amberlyst $\mathrm{H}-15$. The heterogeneous mixture was stirred under reflux for 24 h . Amberlyst $\mathrm{H}-15$ was eliminated by filtration and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with an aqueous saturated solution of $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2}-\right.$ $\mathrm{SO}_{4}$ ), and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1\right)$ to afford compound 3 $\left(R_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95: 5\right), 8 \mathrm{mg}, 17 \%\right)$.

Scheme 1, Route b. To a solution of $1(20 \mathrm{mg}, 32 \mu \mathrm{~mol})$ in dry THF ( 1 mL ) were added triphenylphosphine ( $36 \mathrm{mg}, 144 \mu \mathrm{~mol}, 4.5$ equiv), iodide ( $36 \mathrm{mg}, 144 \mu \mathrm{~mol}, 4.5$ equiv), and diethylazodicarboxylate ( $24 \mathrm{mg}, 21 \mu \mathrm{~L}, 144 \mu \mathrm{~mol}, 4.5$ equiv). The mixture was stirred at room temperature overnight, concentrated under reduced pressure, and submitted successively to flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 98: 2,95: 5,9: 1$ ) and Sephadex LH-20 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give compounds $\mathbf{3}(4 \mathrm{mg}, 21 \%), 4\left(R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.\right.$ $\mathrm{MeOH}, 95: 5), 4 \mathrm{mg}, 21 \%)$, and $5\left(R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95: 5\right)\right.$, $5 \mathrm{mg}, 22 \%$ ).

Scheme 1, Route c. To a solution of $\mathbf{1}(20 \mathrm{mg}, 32 \mu \mathrm{~mol})$ in dry THF was added a large excess of Amberlyst H-15. The heterogeneous mixture was stirred under reflux for 5 days. Amberlyst H-15 was eliminated by filtration and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was concentrated under reduced pressure and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 98: 2\right)$ to afford compounds $\mathbf{3}(2 \mathrm{mg}$, $11 \%), 4(2 \mathrm{mg}, 11 \%)$, and $6\left(R_{f}=0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95: 5\right), 5 \mathrm{mg}\right.$, 26\%). 3: colorless oil; $[\alpha]_{\mathrm{D}}+30\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $v_{\max } 3473,2924,2853,1755,1459,1372,1318,1242,1198,1067 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-34), 1.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-25 \mathrm{a}$ or H-27a), $1.25\left(25 \mathrm{H}, \mathrm{s}, \mathrm{H}-25 \mathrm{a}\right.$ or $\left.\mathrm{H}-27 \mathrm{a},-\mathrm{CH}_{2}-\right), 1.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-33)$, $1.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-25 \mathrm{~b}$ or H27b), $1.39(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-14, \mathrm{H}-37), 1.52-1.56$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-25 \mathrm{~b}$ or H-27b, H-29), $1.63(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-17 \mathrm{a}, \mathrm{H}-18 \mathrm{a}$, H-21a, H-22a), 1.84 (2H, m, H-26), 1.94-2.00 (4H, m, H-17b, H-18b, $\mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{~b}), 2.26(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-3), 3.21-3.23(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-24$, $\mathrm{H}-28), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 3.84-3.91(3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-19, \mathrm{H}-20, \mathrm{H}-23), 4.99(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{H}-36), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35)$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1(\mathrm{C}-34), 19.2(\mathrm{C}-37), 22.6,23.4$ (C-26), 25.2, 25.6, 25.7, 27.4, 28.0, 28.4, 28.8, 28.9, 29.2, 29.3, 29.5, 29.6, 29.7, 31.8, 31.9, 33.5, 36.5, 74.1 (C-15), 77.3 (C-36), 77.8 (C28), 80.3 (C-24), 81.9, 82.0, 82.5, 83.0, 83.2 (C-16, C-19, C-20, C-23), 134.4 (C-2), 148.8 (C-35), 173.9 (C-1); ESIMS $m / z 627[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS m/z [M + Na] 627.4612 (calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{NaO}_{6} 627.4601$ ). 4: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20}+50\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\max }$ 3488, 2924, 2853, 1753, 1462, 1437, 1317, 1195, 1069, $1028 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR 0.87 (3H, m, H-34), $1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-25 \mathrm{a}), 1.27(25 \mathrm{H}, \mathrm{s}, \mathrm{H}-27 \mathrm{a}$, $\left.-\mathrm{CH}_{2}-\right), 1.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-33), 1.40(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-14, \mathrm{H}-37), 1.54(3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4, \mathrm{H}-25 \mathrm{~b}), 1.64(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-18, \mathrm{H}-27 \mathrm{~b}, \mathrm{H}-29), 1.73(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-21)$, $1.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-26), 1.95(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 2.04(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 2.26$ $\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{3-4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-24)$, $3.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-28), 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 3.83-3.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$, $\mathrm{H}-20), 4.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 4.99\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{36-37}=6.0 \mathrm{~Hz}, \mathrm{H}-36\right), 6.98$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35$ ); ${ }^{13} \mathrm{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.1$ (C-34), 18.4, 19.2 (C-37), 22.6, 25.2, 25.7, 25.8, 27.4, 28.4, 28.7, 28.9, 29.0, 29.2, 29.3, 29.5, 29.6, 29.7, 29.9, 30.4, 31.9, 33.0, 33.4, 72.2 (C-28), 73.2 (C-24), 74.1 (C-15), 77.3 (C-36), 80.0, 81.8, 81.9, 83.1 (C-16, C-19, C-20, C-23), 134.4 (C-2), 148.8 (C-35), 173.9 (C-1); ESIMS m/z $627[\mathrm{M}+$ $\mathrm{Na}]^{+}$; HRESIMS $\mathrm{m} / \mathrm{z} 627.4623[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{NaO}_{6}$ 627.4601. 5: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{20} 0\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $\nu_{\max } 3462,2925,2854,1756,1460,1374,1318,1198,1118,1071 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.87(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-34), 1.26(26 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{CH}_{2}-\right), 1.33(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-33), 1.40(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-14, \mathrm{H}-25, \mathrm{H}-37), 1.54$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ), $1.65(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-18, \mathrm{H}-21), 1.84(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-27$, $\mathrm{H}-29), 1.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 2.26\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{3-4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.39$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$ ), $3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 3.86-3.89(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-19, \mathrm{H}-20$, $\mathrm{H}-24), 3.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-28), 4.99\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{36-37}=\right.$ 6.0 Hz, H-36), 6.98 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35$ ); ${ }^{13} \mathrm{C}$ NMR ( $\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$ (C-34), 19.2 (C-37), 22.6, 25.2, 25.7, 27.4, 28.4, 29.2, 29.3, 29.5, 29.6, 29.7, 30.9, 31.9, 34.4, 35.3, 40.4 (C-28), 71.4 (C-24), 74.1, 77.3, 82.0, 82.5, 134.4, 148.8, 173.9; ESIMS $m / z 755[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS $m / z$ $755.3716[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{INaO}_{6} 755.3724$. 6: colorless oil; $[\alpha]_{\mathrm{D}} 0\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\max } 3460,2924,2854$, $1754,1461,1318,1200,1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.88(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-34), 1.27\left(24 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 1.33(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-33), 1.40$ ( $7 \mathrm{H}, \mathrm{m}, \mathrm{H}-14, \mathrm{H}-25, \mathrm{H}-37$ ), $1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.65(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$, $\mathrm{H}-21), 1.83-1.98(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-22), 1.98(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-26$ and H-29 or H-27 and H-30), $2.26\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{3-4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.39(1 \mathrm{H}, \mathrm{m}$, H-15), 3.87 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ ), $3.90-3.93$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{H}-19, \mathrm{H}-20, \mathrm{H}-23$, $\mathrm{H}-24), 4.99\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{36-37}=6.0 \mathrm{~Hz}, \mathrm{H}-36\right), 5.40(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-27$ and $\mathrm{H}-28$ or $\mathrm{H}-28$ and $\mathrm{H}-29), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35) ;{ }^{13} \mathrm{C}$ NMR ( 50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1(\mathrm{C}-34), 19.2(\mathrm{C}-37), 22.6,25.2,25.7,27.4,28.3,28.9$, 29.2, 29.3, 29.5, 29.6, 31.9, 32.5, 33.4, 33.5, 71.4 (C-24), 74.1 (C-15), 77.3 (C-36), 82.5, 82.6, 82.8, 83.2 (C-16, C-19, C-20, C-23), 129.8 (C-27 and C-28 or C-28 and C-29), 134.4 (C-2), 148.8 (C-35), 173.9 (C-1); ESIMS m/z $627[\mathrm{M}+\mathrm{Na}]^{+}$; HRESIMS m/z. $627.4609[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{NaO}_{6} 627.4601$.

Procedure for the Preparation of Compounds 7 and 8. To a solution of squamocin $(\mathbf{1}, 34 \mathrm{mg}, 55 \mu \mathrm{~mol})$ in dry THF $(1 \mathrm{~mL})$ under stirring were added triphenylphosphine ( $29 \mathrm{mg}, 110 \mu \mathrm{~mol}, 2$ equiv) and diethylazodicarboxylate ( $19 \mathrm{mg}, 17 \mu \mathrm{~L}, 110 \mu \mathrm{~mol}, 2$ equiv). The mixture was stirred overnight at room temperature, concentrated under reduced pressure, and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2}-\mathrm{MeOH}, 98: 2,95: 5$ ) to give two fractions. Both fractions were purified over a column of Sephadex LH-20 impregnated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $7(14 \mathrm{mg}, 32 \%)$ and $\mathbf{8}(6 \mathrm{mg}, 11 \%)$. 7: colorless oil; $[\alpha]_{\mathrm{D}}+15$ (c 0.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $\nu_{\max } 3470,3290,2924,2854,1752$, $1708,1522,1464,1439,1412,1376,1317,1259,1227,1117,1061$, 1028, 953, 875, 759, 722, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-34), 1.27\left(32 \mathrm{H}, \mathrm{s}, \mathrm{H}-40, \mathrm{H}-43,-\mathrm{CH}_{2}-\right), 1.37(2 \mathrm{H}, \mathrm{m}$, H-33), $1.41\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{37-36}=6.0 \mathrm{~Hz}, \mathrm{H}-37\right), 1.43(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-25), 1.52-$ 1.54 (6H, m, H-4, H-27, H-29), 1.64 (5H, m, H-14a, H-18, H-21), 1.85$1.97(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-22), 2.26\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{3-4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 2.51(1 \mathrm{H}$, m, H-14b), 3.39 (1H, m, H-15), 3.83-3.92 (6H, m, H-16, H-19, H-20, $\mathrm{H}-23, \mathrm{H}-24, \mathrm{H}-28), 4.17(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-39, \mathrm{H}-43), 4.99\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{36-37}=\right.$ 6.0 Hz, H-36), $6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35)$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$ (C-34), 14.6 (C-40, C-43), 19.2 (C-37), 22.6, 25.1, 25.7, 27.4, 28.3, 28.9, 29.2, 29.3, 29.5, 29.6, 29.7, 30.5, 31.8, 33.4, 39.4, 62.0 (C-39, $\mathrm{C}-42), 67.7(\mathrm{C}-28), 71.2(\mathrm{C}-24), 74.1(\mathrm{C}-15), 77.3(\mathrm{C}-36), 82.2,82.4$, 82.8, 83.2 (C-16, C-19, C-20, C-23), 134.4 (C-2), 148.8 (C-35), 173.6 $(\mathrm{C}-1)$; ESIMS m/z $803[\mathrm{M}+\mathrm{Na}]^{+} .8$ : colorless oil; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $v_{\max } 3470,3290,2924,2854,1752,1708,1522,1464,1439,1412$, 1376, 1317, 1259, 1227, 1117, 1061, 1028, 953, 875, 759, 722, 696 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-34), 1.27(38 \mathrm{H}, \mathrm{s}$, H-40, H-43, H-46, H-49, - $\left.\mathrm{CH}_{2}-\right), 1.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-33), 1.41(3 \mathrm{H}, \mathrm{d}$, $\left.{ }_{3} J_{37-36}=6.0 \mathrm{~Hz}, \mathrm{H}-37\right), 1.52-1.54(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-25, \mathrm{H}-27, \mathrm{H}-29)$, 1.64 (5H, m, H-14a, H-18, H-21), 1.85-1.97 (4H, m, H-17, H-22), $2.26\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{3-4}=7.5 \mathrm{~Hz}, \mathrm{H}-3\right), 2.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{~b}), 3.39(1 \mathrm{H}, \mathrm{m}$, H-15), 3.83-3.92 (5H, m, H-16, H-19, H-20, H-23, H-28), 4.17 ( 8 H , $\mathrm{m}, \mathrm{H}-39, \mathrm{H}-43, \mathrm{H}-45, \mathrm{H}-48), 4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-24), 4.99\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{36-37}\right.$ $=6.0 \mathrm{~Hz}, \mathrm{H}-36), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-35) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
14.1 (C-34), 14.414 .5 (C-40, C-43, C-46, C-49), 19.2 (C-37), 22.6, 25.1, 25.7, 27.4, 28.8, 29.2, 29.3, 29.5, 29.6, 29.7, 31.8, 33.4, 39.4, 62.7 (C-39, C-42), 67.7 (C-28), 68.2 (C-24), 74.1 (C-15), 77.3 (C-36), 81.5, 83.1 (C-16, C-19, C-20, C-23), 134.4 (C-2), 148.8 (C-35), 173.6 (C-1); ESIMS m/z $961[\mathrm{M}+\mathrm{Na}]^{+}$.

Biological Activities. Jurkat cell culture treatments and cytofluorimetric determination of apoptosis were performed according to previously described procedures; see ref 4a.

Acknowledgment. We thank J. C. Jullian for assistance with the NMR studies.

## References and Notes

(1) For a recent review article, see: Bermejo, A.; Figadère, B.; ZafraPolo, M.-C.; Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269-303.
(2) See inter alia: (a) Nakanishi, Y.; Chang, F.-R.; Liaw, C.-C.; Wu, Y.-C.; Bastow, K. F.; Lee, K.-H. J. Med. Chem. 2003, 46, 31853188. (b) Huang, G.-R.; Jiang, S.; Wu, Y.-L.; Jin, Y.; Yao, Z.-J.; Wu, J.-R. ChemBioChem 2003, 4, 1216-1221.
(3) Höglinger, G. U.; Michel, P. P.; Champy, P.; Féger, J.; Hirsch, E. C.; Ruberg, M.; Lannuzel, A. Mov. Disord. 2005, 20, 118-119, and references therein.
(4) (a) Derbré, S.; Duval, R. A.; Roué, G.; Garofano, A.; Poupon, E.; Brandt, U.; Susin, S. A.; Hocquemiller, R. ChemMedChem 2006, 1 , 118-129. (b) Duval, R. A.; Poupon, E.; Romero, V.; Peris, E.; Lewin, G.; Cortes, D.; Brandt, U.; Hocquemiller, R. Tetrahedron 2006, 62, 6248-6257. (c) Duval, R. A.; Lewin, G.; Peris, E.; Chahboune, N.; Garofano, A.; Dröse, S.; Cortes, D.; Brandt, U.; Hocquemiller, R. Biochemistry 2006, 45, 2721-2728. (d) Derbré, S.; Roué, G.; Poupon, E.; Susin, S. A.; Hocquemiller, R. ChemBioChem 2005, 6, 979982. (e) Duval, R. A.; Poupon, E.; Brandt, U.; Hocquemiller, R. Biochim. Biophys. Acta 2005, 1709, 191-194.
(5) (a) Fujimoto, Y.; Eguchi, T.; Kakinuma, K.; Ikekawa, N.; Sahai, M.; Gupta, Y. K. Chem. Pharm. Bull. 1988, 36, 4802-4806. (b) Cavé, A.; Figadère, B.; Laurens, A.; Cortes, D. In Progress in the Chemistry of Natural Products; Herz, W., Kirby, G. W., Moore, R. E., Steglich,
W., Tamm, C., Eds.; Springer-Verlag: Wien, 1997; Vol. 70; pp 81288.
(6) Fall, D. F.; Duval, R. A.; Gleye, C.; Laurens, A.; Hocquemiller, R. J. Nat. Prod. 2004, 67, 1041-1043.
(7) For previous acetogenins bearing a tetrahydropyran ring, see: (a) Shi, G.; Alfonso, D.; Fatope, M. O.; Zeng, L.; Gu, Z.-M.; Zhao, G.X.; He, K.; MacDougal, J. M.; McLaughlin, J. L. J. Am. Chem. Soc. 1995, 117, 10409-10410. (b) Shi, G.; Kozlowski, J. F.; Schwedler, J. T.; Wood, K. V.; MacDougal, J. M.; McLaughlin, J. L. J. Org. Chem. 1996, 61, 7988-7989. (c) Chávez, D.; Acevedo, L. A.; Mata, R. J. Nat. Prod. 1998, 61, 419-421. (d) Alali, F. Q.; Rogers, L.; Zhang, Y.; McLaughlin, J. L. Tetrahedron 1998, 54, 5833-5844. (e) Wang, L.-Q.; Nakamura, N.; Meselhy, M. R.; Hattori, M.; Zhao, W.-M.; Cheng, K.-F.; Yang, R.-Z.; Qin, G.-W. Chem. Pharm. Bull. 2000, 48, 1109-1113.
(8) Tajbakhsh, M.; Hosseinzadeh, R.; Lasemi, Z. Synlett 2004, 635638.
(9) Mitsunobu, O. Synthesis 1981, 1-28.
(10) Lee, S. H; Kohn, H. J. Org. Chem. 2002, 67, 1692-1695.
(11) (a) Backes, J. R.; Koert, U. Eur. J. Org. Chem. 2006, 2777-2785. (b) Kawai, N.; Lagrange, J.-M.; Ohmi, M.; Uenishi, J. J. Org. Chem. 2006, 71, 4530-4537.
(12) Sahai, M.; Singh, S.; Singh, M.; Gupta, Y. K.; Akashi, S.; Yuji, R.; Hirayama, K.; Asaki, H.; Araya, H.; Hara, N.; Eguchi, T.; Kakinuma, K.; Fujimoto, Y. Chem. Pharm. Bull. 1994, 42, 1163-1174.
(13) Gleye, C.; Raynaud, S.; Hocquemiller, R.; Laurens, A.; Fourneau, C.; Serani, L.; Laprévote, O.; Roblot, F.; Lebœuf, M.; Fournet, A.; Rojas de Arias, A.; Figadère, B.; Cavé, A. Phytochemistry 1998, 47, 749-754.
(14) For previous biomimetically inspired work in the field of annonaceous acetogenins, see for example: (a) Gleye, C.; Franck, X.; Hocquemiller, R.; Laurens, A.; Laprévote, O.; de Barros, S.; Figadère, B. Eur. J. Org. Chem. 2001, 3161-3164. (b) Hu, Y.; Cecil, A. R. L., Franck, X.; Gleye, C.; Figadère, B.; Brown, R. C. D. Org. Biomol. Chem. 2006, 4, 1217-1219.

NP060376B


[^0]:    * To whom correspondence should be addressed. Tel: +33-1-46 8355 86. Fax: +33-1-46 8353 99. E-mail: erwan.poupon@u-psud.fr.

